skip to main content


Search for: All records

Creators/Authors contains: "Sekhon, Jasjeet S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms—such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks—to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods.

     
    more » « less
  2. Summary

    Experimenters often use post-stratification to adjust estimates. Post-stratification is akin to blocking, except that the number of treated units in each stratum is a random variable because stratification occurs after treatment assignment. We analyse both post-stratification and blocking under the Neyman–Rubin model and compare the efficiency of these designs. We derive the variances for a post-stratified estimator and a simple difference-in-means estimator under different randomization schemes. Post-stratification is nearly as efficient as blocking: the difference in their variances is of the order of 1/n2, with a constant depending on treatment proportion. Post-stratification is therefore a reasonable alternative to blocking when blocking is not feasible. However, in finite samples, post-stratification can increase variance if the number of strata is large and the strata are poorly chosen. To examine why the estimators’ variances are different, we extend our results by conditioning on the observed number of treated units in each stratum. Conditioning also provides more accurate variance estimates because it takes into account how close (or far) a realized random sample is from a comparable blocked experiment. We then show that the practical substance of our results remains under an infinite population sampling model. Finally, we provide an analysis of an actual experiment to illustrate our analytical results.

     
    more » « less